- d P ( Roentgen ninety + i , t = 1 | An effective i , t , N i , t , An excellent ? we , t , Letter ? we , t ) d Good i , t > 0 and P ( R ninety + we , t = step 1 | Good i , t , A beneficial ? i , t , Letter i , t , N ? we , t ) ? 0
- d P ( Roentgen ninety + i , t = 1 | A great i , t , Letter i , t , A good ? i , t , N ? i , t ) d An effective i , t ? 0
- d P ( F i , t = 1 | A good i , t , Letter i , t , A great ? i , t , Letter ? i , t , R 90 + we , t ? step one = 1 ) d An excellent i , t > 0 and you may P ( F we , t = step one | A i , t , A good ? i , t , N i , t N ? we , t , Roentgen ninety + i , t ? 1 = step 1 ) ? 0
- d P ( F i , t = 1 | A beneficial i , t , N we , t , A beneficial ? i , t , N ? i , t , Roentgen ninety + we , t ? step 1 = 1 ) d A we , t ? step 1 = 0
Hypothesis A states that the probability of a loan entering 90+ day arrears is increasing in the size of the ability-to-pay shock and is close to 0 where the size of the shock does not exceed the borrowers’ ability-to-pay threshold. Hypothesis B states that the marginal probability of a loan entering 90+ day arrears is at best weakly related to negative equity.Seguir leyendo